NCHRP Project 20-07/Task 361 Hamburg Wheel-Track Test (HWTT) Equipment Requirements and Improvements to AASHTO T 324

> Louay N. Mohammad Mostafa A. Elseifi Amar Raghavendra Mengqiu Ye

FHWA Asphalt Binder Expert Task Group Salt Lake City, Utah April 25 – 27, 2016

Outline

- Background
- Objective
- Methodology
- Review Available Hamburg Test Equipment
- Experimental Program
- Summary
- Recommended changes to AASHTO T-324

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

NCHRP

Web-Only Document 219:

http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w219.pdf

Hamburg Wheel-Track Test Equipment Requirements and Improvements to AASHTO T 324

> Louay N. Mohammad Mostafa A. Elseifi Amar Raghavendra Mengqiu Ye Louisiana Transportation Research Center Louisiana State University Baton Rouge, LA

Contractor's Final Report for NCHRP Project 20-07/Task 361 Submitted September 2015

> TRANSPORTATION RESEARCH BOARD The National Academies of SCIENCES • ENGINEERING • MEDICINE

Acknowledgement

NCHRP

- Dr. Ed Harrigan
- Technical Review Panel
- Louisiana DOTD

a moving load on compacted asphalt mixture specimens to simulate traffic load applied on asphalt pavements Helmut-Wind (1970s) of Hamburg proposed a test method

Background

Helmut-Wind (1970s) of Hamburg proposed a test method

HWTT device is a laboratory-controlled rut depth test that uses loaded wheel to apply

- rutting and stripping susceptibility
- 8" Diameter x 1.85"
- 158 ± 1.0 lbs
- 52 ± 2 passes / minute
- Agency specification
 - Water Temperature
 - Number of Passes
 - Rut Depth Measurement Locations
 - Maximum Rut Depth
 - Stripping Inflection Point
- Standard Test Method
 - AASHTO T-324
 - State DOTs (CA, CO, IA, IL, LA, MT, OK, TX, UT, WA, WI, LA,...)
- Concern with AASHTO T-324-11
 - Task force SOM TS 2C

Objective

- Document the capabilities of available commercial Hamburg test equipment,
- Determine Hamburg test equipment capabilities, components, or design features that ensure proper testing and accurate, reproducible results, and
- Provide proposed revisions with commentary to AASHTO T-324 to enable the use of a performance type specification for Hamburg test equipment

Methodology

- Task 1. Review Available Hamburg Test Equipment Specifications
- Task 2. Engineering Desk Analysis of Existing Hamburg Test Systems:
 - Evaluate capability of existing equipment to accurately measure, control, and maintain desired test conditions
 - identify issues with AASHTO T 324 procedure
 - » Loading mechanisms;
 - » Temperature measurement and control system;
 - » Impression measurement system;
 - » Specimen dimensions; and
 - » Data collection and reporting.
- Task 3. Propose Revisions to AASHTO T 324
- Task 4. A Framework for Future Laboratory Evaluation
- Task 5. Prepare a final report

Review Available Hamburg Test Equipment

Nationwide Survey:

- -state agencies on the use of HWTs
- -100% response rate

-13 questions

- » What type of LWT do you use? (Please choose one or more manufacturers)
- » Does your machine have a single wheel or two wheels?
- » Which specification do you use? (Please choose one)
- » How often do you calibrate your LWT (months)?
- » What does the calibration include?
- » Is your laboratory AMRL certified for AASHTO T-324?
- » What test temperature(s) do you use? (°C)
- » What is the acceptance criteria used in your state? Please attach a copy of your specifications.
- » What type of specimens do you use?
- » Does you agency specify requirements for the Hamburg test specimen fabrication?
- » Do you have test data that you can share? (Please choose one)
- » How is the result of the Hamburg test reported?
- » How do you use the data you obtain from the machine

Review Available Hamburg Test Equipment

Nationwide Survey

-state agencies on the use of HWTs

Review Available Hamburg Test Equipment

- Four vendors (A, B, C, D)
 - Cox & Sons, InstroTek, Troxler, PTI
 - AASHTO T-324
- Five commercially available HWTT equipment

- Loading mechanisms;
- Temperature measurement and control system;
- Impression measurement system;
- Specimen dimensions; and
- Data collection and reporting.

Loading mechanism

- Load (dead weight, pneumatic),
- Sinusoidal Wheel Speed,
- Drive (Slider-crank, Scotch-yoke, etc.)
- Use of non-sinusoidal wheel speed
 - » total time of loading of front half of specimen is < that of rear half of the specimen;
 - » average speed on front half of specimen is > average speed on rear half of specimen; and
 - » maximum speed is not achieved at the mid-point of stroke, but rather at some point on the front specimen.

• Temperature measurement and control system

		A				
Ver	ndor	Standard model	Economy model	В	С	D
	Туре	Туре Т	Туре Т	Type J	RTD	RTD
	Range (°C)	-200 to 350	-200 to 350	0 to 760	Room temp to 70	-25 to 199
	Number	2	1	1	2	3
Sensor	Location	Next to each specimen	Right side	Bottom tank	Next to each specimen	One between specimens, two to be positioned by user
Tank vol	ume (gal)	40	18	15 (2 tanks)	34 (3 tanks)	22.9
He (k	ater W)	2 x 4.5 Immersion Heaters	4.5	4.5	4.0	2 x 1.5
Circulating	pump (gpm)	34	9	11	10	17
Temperati toler (±	ure control ance °C)	0.3	0.3	1	1	0.5

Impression measurement system

	Α					
Vendor	Standard model	Economy model	В	С	D	
Sensor type	LVDT	LVDT	Magnetostrictive	LVDT	Potentiometric position sensor	
Range (mm.)	50.8	50.8	101.6	50.8	50.0	
Tolerance (± mm)	0.15	0.15	0.0762	0.1	0.045	
Location	Mounted on side of specimen	Mounted on side of specimen	Top of cylinder	Attached to back of loading arm	Mounted on side of frame in line with wheel	

Requirement: Linear Variable Differential Transformer to measure the rut depth The minimum range of this sensor is specified as 20 mm, with an accuracy requirement of 0.15 mm

• Specimen length and track length

* Dimension may very depending on manufacturer

• Data collection and reporting

	A				
Vendor	Standard model	Economy model	В	С	D
Number of data points collected across specimen	11	11	5	Selectable up to 21	227
Range (± from midpoint), inch	4.5	4.5	4.5	4.5	4.45
A/D resolution (bit)	16	16	12	17	16

- Identify issues with different aspects of AASHTO T 324 standard procedure:
 - Wheel position waveform, frequency, and maximum speed;
 - Impression measurement system;
 - Temperature measurement and control system;
 - Wheel dimensions and loads;
 - Specimen and track length;
 - Free Circulating Water on Mounting System; and
 - Data collection and reporting.

- Identify issues with different aspects of AASHTO T 324 standard procedure:
 - Wheel position waveform, frequency, and maximum speed;
 - Impression measurement system;
 - Temperature measurement and control system;
 - Wheel dimensions and loads;
 - Specimen and track length;
 - Free Circulating Water on Mounting System; and
 - Data collection and reporting.

Wheel position waveform, frequency, and maximum speed

- Section 5.1: *Movement of wheel over the specimen*
 - wheel is required to reciprocate over specimen such that its position varies sinusoidally over time.
 - Frequency of movement is specified to be 52 ± 2 passes per minute.
 - Maximum speed is specified to be <u>0.305 m/s (1 ft/s)</u> and is expected to be reached at the midpoint of the specimen.
- Two approaches considered to record position of wheel as a function of time.
 - Accelerometer
 - Video camera
 - » Capture images
 - » analyze

Wheel position waveform, frequency, and maximum speed

- Video camera
 - GoPro
 - » Capture images
 - » Post processing

Ruler type camera mounting systems camera-to-specimen distances Light source

Wheel position waveform, frequency, and maximum speed

- Video camera
 - GoPro
 - » Capture images, 240 fps
 - » Post processing

non-reflective paper ruler (1/16 in. subdivision), adhesive mount, focus distance of 5 in., Professional lighting source (Lowel DP).

Wheel position waveform, frequency, and maximum speed

- Video camera
 - GoPro
 - » Capture images, 240 fps
 - » Post processing

non-reflective paper ruler (1/16 in. subdivision), adhesive mount, smooth Aluminum slab focus distance of 5 in., Professional lighting source (Lowel DP).

Wheel position waveform, frequency, and maximum speed

• Wheel position as a function of time

Experimental Program Wheel position waveform, frequency, and maximum speed

Wheel Position Analysis

Wheel position waveform, frequency, and maximum speed

• Wheel Position Analysis -- Repeatability

Wheel position waveform, frequency, and maximum speed

• Wheel Position Analysis

		Vendor A-1	Vendor A-2	Vendor A-3	Vendor B	Vendor C	Vendor D
Waveform RMSE (mm)		13.21	14.48	13.21	1.02	3.05	1.02
Waveform AMD (mm)		11.43	14.48	13.20	0.88	3.05	1.01
Frequency (passes per minute)		51.8	52	52	51.2	52.1	52.2
	Midpoint (m/s)	0.33	0.33	0.30	0.27	0.31	0.31
	Maximum (m/s)	0.33	0.33	0.30	0.27	0.31	0.31
Speed	Distance of maximum speed location from midpoint (mm)	17.02	8.89	14.22	0.00	0.00	0.51

Wheel position waveform, frequency, and maximum speed

• Wheel Position Analysis

		Vendor A-1	Vendor A-2	Vendor A-3	Vendor B	Vendor C	Vendor D
Waveform RMSE (mm)		13.21	14.48	13.21	1.02	3.05	1.02
Waveform AMD (mm)	11.43	14.48	13.20	0.88	3.05	1.01
Frequency (passes per minute)		51.8	52	52	51.2	52.1	52.2
	Midpoint (m/s)	0.33	0.33	0.30	0.27	0.31	0.31
	Maximum (m/s)	0.33	0.33	0.30	0.27	0.31	0.31
Speed	Distance of maximum speed location from midpoint (mm)	17.02	8.89	14.22	0.00	0.00	0.51

- Identify issues with different aspects of AASHTO T 324 standard procedure:
 - -Wheel position waveform, frequency, and maximum speed;
 - Impression measurement system;
 - Temperature measurement and control system;
 - Wheel dimensions and loads;
 - Specimen and track length; and
 - Data collection and reporting.

Experimental Program Wheel Dimensions

• Wheel Diameter = 203.2 (8")

Experimental Program Wheel Dimensions

• Wheel Thickness = 47 mm (1.85")

Experimental Program Wheel Load

• Wheel Load = $703 \pm 4.5 \text{ N} (158 \pm 1 \text{ lbs.})$

 Identify issues with different aspects of AASHTO T 324 standard procedure:

- Wheel position waveform, frequency, and maximum speed;
- Impression measurement system;
- Temperature measurement and control system;
- Wheel dimensions and loads;
- Specimen and track length;
- Free Circulating Water on Mounting System; and
- Data collection and reporting.

Free Circulating Water on Mounting System

 Sections 5.5 and 5.6 of AASHTO T-324 requires that the specimen mounting system (slab or cylinder) must suspend the specimen and provide a minimum of 20 mm (0.8 in.) of free circulating water on all sides

Experimental Program Free Circulating Water on Mounting System

 Mounting system needs to provide at least 20 mm (0.8 in.) of free circulating water on all sides

Distance, mm	Vendor A-1	Vendor A-2	Vendor A-3	Vendor B	Vendor C	Vendor D
Тор	38.1	22.3	34.9	17.5	27.3	20.6
Bottom	108.0	108.0	98.4	22.2	88.6	90.5
Left	44.5	47.6	6.4	73.0	71.2	71.4
Right	227.0	227.0	0.0	0.0	108.0	69.9
Front	257.2	266.7	217.2	98.4	70.62	196.9
Back	231.8	231.8	101.6	152.4	179.8	82.6

 Identify issues with different aspects of AASHTO T 324 standard procedure:

- Wheel position waveform, frequency, and maximum speed;
- Impression measurement system;
- Temperature measurement and control system;
- Wheel dimensions and loads;
- Specimen and track length; and
- Data collection and reporting.

Temperature measurement and control system

 Section 5.2: Specifies that A water bath capable of controlling the temperature within ±1.0°C over a range of 25 to 70°C with a mechanical circulating system stabilizing the temperature within the specimen tank

• T -324 verification requirements

- temperature in the bath at four locations
- preconditioning time = 30 minutes

Temperature measurement and control system

Four RTD on each SGC

- Two at top
- Two at bottom
- DATAQ DI-718Bx data acquisition
- 8 Hz

	Side	Specime n	Sensor position	Sensor ID	
1	Left	Front	Тор	LFT	
2	Left	Front	Bottom	LFB	
3	Left	Back	Тор	LBT	
4	Left	Back	Bottom	LBB	
5	Right	Front	Тор	RFT	
6	Right	Front	Bottom	RFB	
7	Right	Back	Тор	RBT	
8	Right	Back	Bottom	RBB	

Temperature Measurement and Control System – 25°C

temperatures after 30 minutes conditioning

	Side	Specime n	Sensor positio n	Senso r ID
1	Left	Front	Тор	LFT
2	Left	Front	Bottom	LFB
3	Left	Back	Тор	LBT
4	Left	Back	Bottom	LBB
5	Righ t	Front	Тор	RFT
6	Righ t	Front	Bottom	RFB
7	Righ t	Back	Тор	RBT
8	Righ t	Back	Bottom	RBB

does include a cooling system, not functional

Temperature Measurement and Control System – 50°C temperatures after 30 and 60 minutes conditioning

51.4

51.0

50.6

50.2

49.8

49.4

49.0

48.6

Temperature (°C)

	Side	Specime n	Sensor positio n	Senso r ID
1	Left	Front	Тор	LFT
2	Left	Front	Bottom	LFB
3	Left	Back	Тор	LBT
4	Left	Back	Bottom	LBB
5	Righ t	Front	Тор	RFT
6	Righ t	Front	Bottom	RFB
7	Righ t	Back	Тор	RBT
8	Righ t	Back	Bottom	RBB

Temperature Measurement and Control System – 70°C temperatures after 30 and 60 minutes conditioning

RTD

Top view

 Identify issues with different aspects of AASHTO T 324 standard procedure:

- Wheel position waveform, frequency, and maximum speed;
- Impression measurement system;
- Temperature measurement and control system;
- Wheel dimensions and loads;
- Specimen and track length; and
- Data collection and reporting.

Experimental Program Impression measurement system

- Calibrated LVDTs
- Developed calibration specimens
 - Verify the locations of impression readings
 - Curvature
 - » depression at any location along track is known
 - » Max depth = 0.75" at center

Experimental Program Impression measurement system

- Verify vendor's calibration of impression measurement systems
- Install Developed calibration specimens
 - Verify the locations of impression readings
 - Curvature
 - » depression at any location along track is known
 - » Max depth = 0.75" at center

Experimental Program Impression measurement system

- Reference profile
 - machine LVDT connected to external data acquisition system

Experimental Program Impression Measurement System

 significant deviations from reference profile, with a marked skew to the right

Experimental Program Impression Measurement System

• reasonably good agreement with reference profile

-97	-32	0	32	99

Impression Measurement System

- Good agreement with reference profile: -80 to +80 mm
- Slight deviation outside -80 to + 80mm

-110, -100, -90, -80, -70, -60, -50, -40, -30, -20, -10, 0, +10, +20, +30, +40, +50, +60, +70, +80, +90, +100, +110 23 equally-spaced locations

Experimental Program Impression Measurement System

• Good agreement with reference profile

-113 to +113 Total = 227 Spacing = 1 mm

Experimental Program Impression Measurement System

• Deviation from reference profile

Vendor	RMSE (in.)	AMD (in.)
A-1	0.10	0.08
A-2	0.14	0.12
A-3	0.08	0.06
В	0.02	0.01
С	0.02	0.01
D	0.01	0.00

Data collection and reporting

- Section 10: requires five parameters to be collected and reported to quantify the performance of a mixture to rutting and moisture susceptibility:
 - Number of passes at maximum impression,
 - » At a fixed maximum impression value (e.g., 12.5mm), an asphalt mixture with a larger number of passes is more resistant to rutting
 - Maximum impression,
 - » obtained at completion of test
 - » reported to quantify rutting resistance
 - Creep slope
 - » Inverse of deformation rate in the creep phase.
 - » starts after consolidation phase
 - » ends before stripping starts.
 - » rut depth starts to increase steadily due to viscous flow.
 - Strip slope
 - » inverse of deformation rate at where the rut depth increases tremendously as moisture damage occurs. A mixture with a larger strip slope value is more sensitive to moisture damage
 - Stripping Inflection Point (SIP)
 - » occurs where curve has a sudden increase in rut depth
 - » reflects phase where asphalt binder starts to strip from aggregate

- Section 10: requires five parameters to be collected and reported to quantify the performance of a mixture to rutting and moisture susceptibility:
 - There were not sufficient details to allow for consistent analysis and reporting

- Section 10: requires five parameters to be collected and reported to quantify the performance of a mixture to rutting and moisture susceptibility:
 - There were not sufficient details to allow for consistent analysis and reporting

	Number Of Passes at max impression	Max Impression (mm)	Creep Slope (*10 ⁻⁴)	Strip Slope (*10 ⁻⁴)	SIP
Vendor A	12,800	25	N/A	N/A	10,712
Vendor B	N/A	N/A	N/A	N/A	473
Vendor C	12,800	25	64	34	9,471
Vendor D	12,850	26	8	25	9,104
lowa DOT	12,806	25	4	53	10,552
Oklahoma DOT	N/A	N/A	6	107	11,295

- Section 10: requires five parameters to be collected and reported to quantify the performance of a mixture to rutting and moisture susceptibility:
 - There were not sufficient details to allow for consistent analysis and reporting

	Number Of Passes at max impression	Max Impression (mm)	Creep Slope (*10⁻⁴)	Strip Slope (*10⁻⁴)	SIP
Vendor A	20,000	2.1	N/A	N/A	N/A
Vendor B	20,000	2.1	N/A	N/A	-3,211
Vendor C	20,000	2.1	0.07	0.07	19,892
Vendor D	20,000	2.1	No stripping	No stripping	No stripping
lowa DOT	20,000	1.9	0.3	0.4	No stripping
Oklahoma DOT	20,000	2.1	1	3	180

- Section 10: requires five parameters to be collected and reported to quantify the performance of a mixture to rutting and moisture susceptibility:
 - There were not sufficient details to allow for consistent analysis and reporting

	Number Of Passes	Max Impression (mm)	Creep Slope	Strip Slope	SIP
Vendor A	Y	Y	N	Ν	Y
Vendor B	Ν	Ν	Ν	Ν	Y
Vendor C	Y	Y	Y	Y	Y
Vendor D	Y	Y	Y	Y	Y
Iowa DOT	Y	Y	Y	Y	Y
Oklahoma DOT	Ν	Ν	Y	Y	Y

Summary

- Differences between HWT machines evaluated
 - Four vendors
 - Lack of detailed requirements for different aspects of the test method
- Waveform
 - Section 5.1: specifies that the wheel reciprocates over the specimen, with the position varying sinusoidally over time
 - Two machines were able to produce a sinusoidal wave (Vendors B and D)

Temperature control system

- Section 5.2: Specifies that A water bath capable of controlling the temperature within ±1.0°C over a range of 25 to 70°C with a mechanical circulating system stabilizing the temperature within the specimen tank
- Majority of machines do not have a cooling system
 - » 25°C dependent on the incoming water temperature
- Average temperatures at end of 30 minutes of conditioning were within the specification limit of 50 ± 1°C (Section 8.9.2), some locations in the HMA specimen were not within specified range.
 - » Longer pre-conditioning time is recommended.

Summary

Impression measurement

- Section 5.3: T 324 does not specify locations of deformation readings or the number of deformation readings.
 - » discrepancies among manufacturers,
 - 5 locations 227 locations along the track length.
 - deformation readings are sometimes not being recorded at the pre-determined locations along the track

Data collection and reporting

- Differences were observed amongst different analysis methods especially in reporting of the SIP
- Analysis methods are machine specific

 Based on results, revisions to AASHTO T 324-14 are recommended are recommended

- ensure repeatable measurements and results from different manufacturers are comparable

Proposed laboratory experimental program

 compare results obtained with HWT devices from various vendors when testing the asphalt mixture

Proposed Modifications AASHTO T-324

- Section 5.1: Define a tolerance for wheel dimensions.
 - Diameter = $203.2 \pm 2 \text{ mm} (8 \pm 0.08 \text{-in})$
 - Width = 47.0 \pm 0.5 mm (1.85 \pm 0.02-in).
 - Wheel dimensions tend to change with wear and deviation from recommended specifications
 - Necessitate replacement of the loading wheel
- Section 5.1: Define a tolerance for "wheel be required to reciprocate over the specimen such that its position varies sinusoidally over time"
 - Root Mean Square Error (RMSE) < 2.54 mm (0.1 in)
- Section 5.1: Define a tolerance for maximum speed of
 - ± 0.02 m/ s (± 0.066 ft/s)
- Section 5.2: AASHTO T 324 specifies the use of a water bath capable of controlling the temperature within ±1.0°C over a range of 25 to 70°C (34°F over a range of 77°F to 158°F). Results of temperature experiment revealed shortcomings in this part of the specification
 - Three of four machines evaluated do not have a cooling system,
 - Limitation to set target temperature to 25°C, especially during summer time.
 - Recommended to modify low range to 35°C (95°F).
 - Recommended to modify upper range 64°C.
 - increase the preconditioning time to 45 min

Proposed Modifications AASHTO T-324

- Section 5.3: AASHTO T 324 does not currently specify the locations of the deformation readings or number of deformation readings
 - Recommend deformation readings at 11 locations along the length of the track.
 - » -114, -91, -69, -46, -23, 0, +23, +46, +69, +91, + 114 mm with zero being the midpoint of the track.
 - » Midpoint of the track should be marked by the different manufacturers to assist the user.
 - While a manufacturer may elect to record deformations at more than 11 locations, these locations should be kept consistent to allow for comparisons between the measured rut depths among different LWT machines
 - Recommend verification of location of deformation measurements using developed in this study.
 - » Maximum total RMSE at the 11 pre-set locations = 1.27 mm (0.05")
- Section 9.2: Report average rut depth based on five middle deformation sensors
 - Recommend sensors located at -46, -23, 0, + 23, and + 46 mm
 - Similar to work reported by Schram and Williams
- Section 9.3: Recommended method to calculate the stripping inflection point (SIP) and other reporting parameters not clearly defined in the current specification

